PHYSICAL REVIEW E 70, 066210(2004)

Nonlinear dynamics of gravity and matter creation in a cosmology
with an unbounded Hamiltonian

Gursoy B. Akgucl, L. E. Reichl! E. V. Derishe\? VI. V. Kocharovsky? and V. V. Kocharovskf/3
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 78712, USA
nstitute of Applied Physics of the Russian Academy of Science, Nizhny Novgorod, Russia
3Department of Physics and Institute for Quantum Studies, Texas A&M University, Texas 77843-4242, USA
(Received 24 June 2004; published 20 December 004

Nonlinear dynamics and stability properties of a cosmological model of spatially homogeneous coupled
gravity and matter fields is analyzed using methods of classical mechanics. The system exhibits regions of
chaos and dramatic changes in structural stability as the strength of the coupling between the fields is varied.
Numerical simulations suggest that Hamiltonian systems with structure appropriate for describing matter-
gravity interaction constitute a new class of nonlinear systems with very unusual and rich dynamics.
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I. INTRODUCTION finedH'=pX+pyy—-L. This allows us to write the following

A consistent formulation of the quantum field theory of Hamiltonian for the field amplitudes:

gravity and matter fields, and a simplified model of quan-
tized conformally-flat gravity conformally coupled to a mas-
sive scalar field, was proposed|[it]. The Lagrangian of this

L1, 1, a b C _
H —E(px+kX2)-E(Py+ky2)+zx4—zy4+axzy2—0,

model has the form (3

1 1 1 where we have chosem{=mi=k, \,=6a, A\,=6b, and \
L==2(= g, +meyA) + = (= dp#p , + Md?) — —\ 0" =2c. A distinctive feature of this Hamiltonian is that it is

2 “ v 2 “ ¢ 4 unbounded from below as well as from above. The reason

1 1 for that is that they-oscillator contributes with the negative
+ Z)\qsd)"'— ﬁ)\zﬁngz, (1)  kinetic and potential energies to the total energy of the sys-
' e tem. We analyze here the case whera, b, andc are posi-

in a Minkowski space-time with a metrig,,=diag1,-1, tive constants. When;o the_ uncouple_d— andy-oscillator§
~1,-1), u, ¥=0,1,2,3. Herey=QW, where the fieldV de- &€ stable anharmonlp os_C|IIators. S|multane_ous creation of
the matter and gravity, i.e., the cosmological birth and

coupling constank, ¢ is the gravity field(the scaled con- grow;[_h of tgeo Unfl\{{ﬁrse, oti:curs é)nly d_L:e to Flrllet nonl_llphear
formal factor of the spacetime metric tens‘myzﬂzn}w, 1) coupling _(C , ) of the matter an gravity oscillators. The
- 1/2 — s Hamiltonian is set equal to zerbl=0, which is a constraint
(3/47G)+4Q)), N=8mGnY/3, and Ny L
imposed by the general theory of relativity in order to get the
proper classical Einstein equations.

Within a semiclassical analysis of quantum gravity and
matter interactions, the fact that the conformal factor of the
spacetime metric contributes with a negative kinetic energy
to the total Hamiltonian has been known for a long time

scribes the matter field with a massand a self-interaction

=-16wGA/3, whereG is the universal gravitational constant
and A is the cosmological constaffor a general reference
see, for examplé¢2,3)).

We will study the stability of the classic@hot quantur
dynamics imposed by this Lagrangian. We will restrict our-

selves to the simple cosmologicéhinisuperspagemodel . ; ) .
where the fields e?re spatially ghoerlnhogengouspagil only c0nL4_.8]' Within a .classmgl,. nonquantized theory, a H?‘m'lf
sider the variation of the amplitudes of the fields as a funcionian system W'th a s_|m|Iar structure has been studpd n
tion of time. This will give valuable information about the [9-13 to describe a Friedmann-Robertson-Walker universe
long-wavelength stability of spatially varying fields. Since conformally coupled to a real, self-interacting, massive sca-
the fields are spatially homogeneous, we can simplify notal—‘?1r field. qu that C‘?‘Sd‘: *+1(k=-1) corresppnds to a posi-
tion. If we let y=x and =y, we can write the Lagrangian in tive (negative spatial curvature. For a pgrt_lcular caae_b

the form =0, it was demonstrated if®] how homoclinic chaos arises

out of the internal resonances betweerand y. The ho-
1, o, 1 1 1 moclinic chaos for the case=0,b<0, c# 0 was reported in
L=- 5(_ X+ mex°) + 5(— ye+mpy) - Zl)\xx4+ Zl?\yy4 [10]. These conclusions were confirmed [ihl] and [12]
where the equations for the primary fixed points of the dy-
RNy 5 namics for various choices of parameteks,a, b, andc
4)‘X Yo ) were derived. They focused on the dynamics for the éase
=1, b=a+2c, a>0, c<0, and b<0, when the gravity-
where Xx=dx/dt and y=dy/dt. The canonical momenta are relatedy oscillator is unstable by itself, and found that the
definedp,=dL/dx andpy=dL/dy and the Hamiltonian is de- phase space had a mixture of chaotic and regular behavior.
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Here we focus on the parameter regio 0, a>0, b u-s s-u
>0, andk=0 which is appropriate to the physical interpre-
tation of the Hamiltonian in Eq(3) as describing the birth
and cosmological evolution of the Universe in the process o
the mutual creation of partially stable matter and gravity due
to their nonlinear coupling. Furthermore, we beta for the
sake of simplicity since, probably, this particular case illus-
trates well enough the general case of differardand b if
they are both positive. The Hamiltonian then takes the forme

_1 . P a4 €2
H—2(px+kx2) 2(py+ky2)+4(x4 y4)+2xy—0.

(4)

Hamilton’s equations of motion can now be written as

. (9 H . (9 H 0.02 0.04 0.08 0.08 0.1 012
XZ&TJX:pX’ pX:—R:—kx—axa—cxyz, a

FIG. 1. A coarse-grained plot of stable and unstable regions as a

JH ) JH function of parametera and c. Black squares contain one stable
py=- 7 =ky+ ay3 - szy. (5) trajectory and white squares contain one unstable trajectory. In all
y cases the initial conditions wergp,,py,x,y)=(d,d,0,0 with d

It is useful to write the equations of motion as coupled sec=10.
ond order differential equations farandy,

y=——=-py,
apy Y

and Osc=<1.5. The black squares each contain a trajectory
X+kx+ad+coxy?=0, y+ky+ay-ody=0. (6 thatis stablegbounded. The white squares each contain a
trajectory which is unstabl¢unboundey@l All trajectories
The gravity-matter interactiofc # 0) affects the matter field used to obtain Fig. 1 had initial condition@,,py.X,y)
and the gravity field in quite different ways. We will see this =(d,d,0,0), whered=10. The numerical criterion for insta-
in the Poincaré surfaces of section and oscillograftisand  bility of a trajectory was that it reach values »fand/ory
y(t) described below. such thatx®+y?=10". Generally, if a trajectory is unstable,
A first step in analyzing the behavior of the system is tothe instability occurs very rapidly after some initial time in-
find the primary fixed points of Hamilton's equatiofis5].  terval 0<t<t,,, Before the timet=t.s, the trajectory ap-
We look for sets of pointSp;,p;,x* ,Y') in phase space such pears to be stable and remains at small values afdy.
that (p,=0,p,=0%=0y=0). There are four sets of fixed After the timet=t.. unstable trajectories appear to diverge

* *

points, (p,,p..X,y"). They are(0,0,0,0, (0,0,+/-k/a,0), exponentially or even explosively rapidly.
(0,0,0,ﬂ—k/a)), and [0,0,+/k(c—a)/(a2+c?), Because there is an elliptic fixed point at the origpy

+\~k(a+c)/(a2+c?)]. For our system, all fixed points con- =p,=x=y=0), there will always be a small stable harmonic
tain imaginary terms except fofp;,p,,x ,y")=(0,0,0,0 region in the immediate neighborhood of the origiithin
which is an elliptic(stablg fixed pointy. Since phase space the original quantum theory of this minisuperspace model,
coordinates must be real, this is the only primary fixed pointthe Iattgr implies that the mmally small vacuum spontaneous
for this system. This behavior of the primary fixed points fluctuations of matter and gravity have to tunnel through a
causes the dynamics of the system considered here to fligite barrier in order to give birth and subsequent inflation of
quite different from the conventional oscillator system dis-the Universe to a macroscopic statés we will see below,
cussed 16,17, or the coupled gravity-matter system con- there generally are additional complex stable regions outside
sidered in[11-14. the harmonic regions. In the unstable regions in Fig. 1, much
The primary purpose of the present paper is to demon®f the comple>§ stablg region disappears. For very ;mall val-
strate, numerically, the impressive nonlinear dynamics genY€S ofa (and fixedc) it becomes more and more difficult to

erated by systems with the unbounded Hamiltonians, such 48S0Ive stable and unstable regions because, as we will see,
the one in Eq(4). We discuss also a wide range of param—the phase space becomes more and more complex with de-

eters for which the systei#) generates very interesting un- €'€@sing values .

stable solutions which, contrary to the stat®unded so- In Fig. 2, we show the dependencetgfon the parameter
lutions, approach infinity(in most cases in an explosive d, which determines the initial values of the momentakKor
fashion in a finite interval of the conformal time =1,¢=0.8, anda=0.2375 in the unstable region. If we start

a trajectory farther away from the phase space origin, the

escape timé.s.tends to be shorter. Although we only show

the behavior ofx(t), the other phase space coordinayés,
Information about the stability of this system is given in p(t), and p,(t) also diverge. In Fig. 3, we show(t) for k

Fig. 1 which is a course-grained stability diagram of phase=1, c=0.8, anda=0.2375 and two initial conditiond=5.9

space trajectories for parametées 1, 0.013%<a<0.135, andd=5.95 which are closer to the origin. For these values

II. STABILITY OF MOTION IN PHASE SPACE
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FIG. 2. The value ok(t) as a function of time is shown fa
=0.2375 andc=0.8 for initial conditions(py,py.x,y)=(d,d,0,0)
with d=10, 15, 25, and 1000. Arrows indicate the valuedofor

each curve. The escape time, for the cases considered, decrea

with increasingd.

of k, a, andc, the trajectory becomes stable for all values of

d less thand=5.95. Figure éa) shows the stability regions
for k=1, 0<a=<0.32, andc=0.8 and Fig. &) shows a mag-
nification of stability regions fok=1, 0<a=<0.038, andc
=0.8. The stability regions become more fracturecaate-
creases and appear to have a fractal-like character.

lll. POINCARE SURFACES OF SECTION

We can study the overall structure of flow in the phase

space using Poincaré surfaces of sectj@b]. We solve
Hamilton’s equations of motion numerically and we con-

struct two types of surface of section. To show the behavior

10
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FIG. 3. The value ok(t) as a function of time is shown fa
=0.2375 andc=0.8 for initial conditions(py,py.x,y)=(d,d,0,0)
with d=5.90 andd=5.95. The trajectory withd=5.90 remains
stable. The trajectory witd=5.95 is unstable.
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FIG. 4. Stablgblack) and unstabléwhite) regions of the phase
space forc=0.8 and varying values of the parameter(a) O<a
=<0.32; (b) 0=<a=<0.038. The vertical linegarrowy above (a)
mark values ofa for which surfaces of section are shown in Fig. 7

(Fig. 8).

of p, andx we plot p, versusx every timey=0 andp,>0.

To show the behavior gb, andy we plot p, versusy every
time x=0 andp,>0.

sesAn important feature of this system is scale invariance.
First, if we scale the canonical variables by a factofafso
thatx=xva, y=yva, p=pyx\a, andp,=p,\a, then the equa-
tions of motion for scaled variable@i,ﬁy,zw take the

form
X=P Be=-KK-R- XV,
- _ N _ C
y=-py, py=ky+F—;W (7)

Second, if we scale the canonical variables and time accord-
Ing to X— \|k|z y— \“s|k|y’ pXH|k|pX1 pyﬂ|k|pyi t*>t/\§|k|,
then the equations of motion take the form

(@]

'~ 2

k_:@, @z—sgr{k)?—?— Xy?,

QO |

C
- —X9y.
a

=~ Py, py:Sgr(k)y"'y3
In other words, only a sign df is important and it is enough
to consider only three valuds=1,0,—-1.

Thus, along a line of fixedt/a on the(a,c) plane the
equations of motion for the scaled variables are unchanged.
As we changea and ¢ keeping the ratiac/a constant, the
structure of the phase space motion in terms of the original
variables(p,, py,X,y) will be unchanged, but its overall scale
will change depending on howa is changed. This can be
seen in Fig. 5, where we plot surfaces of sectiorkfed and
¢/a=0.075, but for different values @ andc. Figures %a)
and §b) show surfaces of section gf, versusx and py
versusy, respectively, forla=0.06¢=0.8¢/a=0.075. Fig-
ures %c) and %d) show surfaces of section pf versus< and
py versusy, respectively, for(a=0.6, c=8.0, ¢c/a=0.075.

The initial conditions(p, pj,x°,y°) used to solve Hamilton’s
equations in Eq.5) for all four plots are(py=d/va,py
=d/\ax®=0y°=0) for d+1,+5,+10,+20,+30,+40,
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FIG. 6. A coarse-grained plot of stable and unstable regions
(stability bordey for k=1,a=0, as a function of initial conditionsl,
and gravity-matter coupling strengtt, Black squares contain one
stable trajectory and white squares contain one unstable trajectory.

FIG. 5. Scaling behavior of the phase spa@.p, versusx
surface of section foa=0.06 andc=0.8.(b) p, versusy surface of
section fora=0.06 andc=0.8.(c) p, versusx surface of section for
a=0.6 andc=8.0. (b) p, versusy surface of section foa=0.6 and
c 80 In all cases, the initial conditions we(g= d/\ap =d/\a,

0y°=0) with d=+1,+5,+10, 20, +30, 40, +50, and +100. contain any spines. Thg, versusy phase space structures on

stable stripes with very large values ofa contain many

+50, +100. We see that the surfaces of section are identicapines.
for Figs. a) and c) and for Figs. &) and gd). However, It is interesting to see how the phase space structures in
the overall scale has changed by a factor \@6/0.06 Figs. q1b)-7(d) and 7f)-7(h) change as we move to the
=\10~3.16. This scaling behavior is the reason we seeight-hand edge of the stable stripe that they inhabit. In Fig.
stripes of stable and unstable motion along lines of constars, we show thep, versusx and p, versusy surfaces of
c/a in Fig. 1. What is not clear is why the phase spacesection fork=1, ¢c=0.8, anda=0. 156 0.066, 0.0375, and
alternates between stable and unstable behavior as we char@e24. The initial conditions used are agairl
the ratioc/a. =+1,+5,+10,+20,+30,+40,+50, and +100. All the

For the limiting casea=b=0 and arbitrark, we can use structures are expanding into larger regions of the phase
an additional scaling«—x/\[cl,y—y/\|c.p,—p/V|cl, p,  space. If we change the value fa by a small amount and
—>py/\|c| that results in the equations of motion withre-  pass into the unstable region on the right, all the phase space
placed by sgft). Combining it with thek-scaling law, we  structure disappears except for a tiny island around the pri-
conclude that a stability border between stadeunded  mary fixed point at(px,py,x ,¥)=(0,0,0,0. Note that the
and unstabléunboundeitrajectories in the parameter space p, versusy phase space structure in Fighglies on a stable
of initial conditions,d, gravity-matter coupling strengtlt, stripe to the left of the one in Fig.(M) and it has an addi-
and curvaturek is determined by the scaling lave  tional set of spines.
=(k?/d?c,. Numerically we find from Fig. 6 that there is ~ We can also look at the effect of the “curvature” param-
only one critical value of the gravity-matter coupling, eter,k. In Fig. 9 we show surfaces of section of the phase
=0.61 and the stability border, indeed, satisfies the abovepace near the origin for the casks0 andk=1 with a
scaling law. =0.06 andc=0.8. Fork=0 only regular trajectories occur

Another important feature of this system is that as wenear the origin, at least on the large scale shown. However,
cross from one stable stripe to another in Fig. 1 qualitativenith k=1 a stochastic wefl8] appears to form in the neigh-
changes occur in the structure of stable phase space flow. borhood of the origin.

Fig. 7, we show thep, versusx and p, versusy surfaces of

section fork:l, c=0.8, anda:029,013,006,0036 These IV. STABLE AND UNSTABLE FIXED POINTS FOR

values of a are indicated by the vertical lines above PARTIAL HAMILTONIANS

Fig. 4(a. The initial conditions in all cases are

=+1,+5,+10,+20,+30,+40,+50,+100. Note that each It is interesting to consider the decomposition of the
time we pass from one stable stripe to the next, in the direcHamiltonian into partial Hamiltonians which contain indi-
tion of decreasing, an additional set of spines gets added tovidual resonance contributions, similar to the approach of
the phase space structure in theversusy surface of sec- Walker and Ford19]. We can perform a canonical transfor-
tion. This process continues to the smallest valuea tifat ~ mation from the Cartesian coordinaigs, py,X,y) to action-
we could resolve. The, versusy phase space structure for angle coordinateél,,Jy, 6y, 6). The Hamiltonian then takes
the stable stripe with the smallest valuesadh does not the form
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s (N -50 FIG. 7. Surfaces of sectiop,
-50 i : versus x for ¢=0.8 and (a) a
-100 -100 Lo -0.29 _ —
A\ YAV, =0.29, (b) a=0.13, (c) a=0.06,
—100 _150 _150 and(d) a=0.036. Surfaces of sec-
-20 0 50 -50 0 50 -50 0 50 tion py versusy for ¢=0.8 and(e)
e X X X a=0.29, (f) a=0.13, (g) a=0.06,
and(h) a=0.036. These values of
100 @ /\ 300 600 1000|(h) a occur at points in Fig. @)
N 200 400 / which are marked by vertical
50 lines. In all cases, the initial con-
100 200 ditions were(p‘x’:d,pgzd,x"zo,y0
=0) with d=+1,+5,+10
> 0 0 0 ,£5, ,
o +20,+30, +40, +50, and +100.
-100 -200 {
-50
- —200 —400
-100 \ -3 _sopl—1L 1J 000
—50 0 50 50 50 —100 0 100 —100 0 100
y y y y
H(J,Jy, 6, 6,) = Hy + V(5 9c0926,) + Vg »Cc0526 3a c
( x1Vys Ux y) 0 (2,0 i x) 0,2 q x) Ho:Jx_Jy"' E(Ji_J)Z/) + EJny (9)
+V(4,0C0946,) + V(g 4C0440,)
+V( 5C0926, + 26,) + V(5 _5C0426), . .
(2.2C0K20;+26,) + Vo - COL26 and the coefficients of the resonance terms are given by
-26,)
=0, ) a, ¢ a, ¢
. . . . V(2 0= 7‘]>< + 7‘]ny’ V(O =" 7‘]y + 7\]ny,
where the angle independent part of the Hamiltonian is 2 2 ‘ 2 2
400 150 150 150
()
100 100} /TN 100
200 P
H 50 50 50 )
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50 o |\ i s :‘Q\'";; FIG. 8. Surfaces of sectiop,
-200 ] ; iy Ji LW versus x for ¢=0.8 and (a) a
-100 Bt I 1] o) =0.156, (b) a=0.066, (c) a
—400 150 —150 il =0.0375, and(d) a=0.024. Sur-
-200 9 200 -50 ¢ 50 50 9 50 -40-20 9 20 40 faces of sectiorp, versusy for ¢
=0.8 and (¢) a=0.156, (f) a
x 10* ; ] ; =0.066,(g) a=0.0375, andh) a
© 5°°|( oool o) [} 000 =0.024. These values afoccur at
points in Fig. 4a) which are
1 500 marked by arrows. In all cases, the
initial conditions were(pg=d,py
o> 0 0 =d,x°=0y°=0) with d=1, 5, 10,
20, 30, 40, 50, and 100.
-1 -500
! \
-2 1 1 1000
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30 R U Following the Walker-Ford approach, we show phase
(a) ok e e space plots for each of the six Hamiltonians

H(nx’ny) = HO + V(nxyny)COQr]XeX + nyﬁy) =0, (11)

where (n,,n,)=(2,0),(0,2),(4,0,(0,4,(2,2,(2,-2). Each of
these Hamiltonians is integrable. Only the Hamiltonians
H2.0 andHq , appear to give rise to nontrivial phase space
behavior. FoH, o, J, is a constant of the motion. A phase
space plot op, versusx is shown in Fig. 10a) for c=0.8 and
a=0.06. This system has primary hyperbolic fixed points at
(J=4/a,0=m/2) and(J,=4/a,0=3m/2). No phase space or-
bits exist for large values op,>8/a. For Ho.2, Jxis a
constant of the motion. A phase space ploppf/ersusy is
shown in Fig. 10b) for c=0.8 anda=0.06. This system has
primary elliptic fixed points at(J,=4/a,0=m/2) and (J,
=4/a,6=3m/2). Surfaces of sections for the remaining
Hamiltonians are plotted in Figs. -1Qf) for c=0.8 and
a=0.06. These remaining Hamiltonians have no nontrivial
primary fixed points and exhibit very regular behavior. In
FIG. 9. (8 Surface of section o, versusx for k=0, a=0.06,  Figs. 1Xa) and 11b) we plot thep, versusx andp, versusy
andc=0.8. (b) Surface of section of, versusx for k=1,a=0.06,  surfaces of section for the full Hamiltonian fe=0.8 and
andc=0.8. a=0.06. It is clear that the full phase space is much more
complicated than its individual parts. Even for very small
a., a, c values ofa _andc we were not able to fin_d a _regime Wh_ere_ th_e
Via,o= éJX, Voay=-— §JY’ Vi, = ZJXJy, fgll dynamics clearly showed the contributions from its indi-
vidual parts, as was the case for the system considered by
Walker and Ford. This suggests that the systems with the
unbounded Hamiltonians, for example the mogéj}—6)
Vo= EJny (10) considered in_ the present paper, constitute an unusual class
of the dynamical systems.

FIG. 10. Phase space plots for the six

Hamiltonians Hinny) for ¢c=0.8 anda
=0.06.(a) A plot of p, versusx for H, ).
(b) A plot of p, versusy for Hg 5. (c) A
plot of p, versusx for H, . (d) A plot of
py versusy for Hy 4. (€) A plot of p,
versusy for H, 5. (f) A plot of p, versus
y for Hiz .
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FIG. 11. Surfaces of section
for the full Hamiltonian for a
=0.06 andc=0.8.(a) p, versusx.
(b) py versusy.

25 T T T 1 00 T T
(a)
201 b 80
15 1 60}
10 1 4o}
- 20 L
Py
o™ . of
-5 1 —20}
-10 1 —o}
15 : 60}
—20} : -so}
o5 . . . _ . .
210 5 0 5 10 R T —T

V. INTERVALS OF ADIABATIC MOTION

We have found that foa=0 anda<c, some of the be-
havior of unstablex andy oscillations can be understood in
terms of an adiabatic analysis. In Figs.(&2and 12b), we
plot x(t) versust andy(t) versust, for the early times, for
k=1, a=0,d=1.9, andc=0.8. In Figs. 1%c) and 12d), we
plot x(t) versust and y(t) versust for k=1, a=0.0015,d

30

mum amplitude of the oscillations can increase or decrease
with increasing time. The& oscillations have very small am-
plitude relative to those of thg oscillator, and they have a
very short period that appears to depend inversely on the
amplitude of they oscillations. Fora=0.0015, the period of
the y oscillations can vary and appears to depend on the
amplitude of they oscillations. Also, both the amplitude and
period of thex oscillations appears to depend on the ampli-

=1.9, andc=0.8. We see some distinctive differences in thetude of they oscillations.

behavior fora=0 and fora=0.0015. Fora=0, the period of
the y oscillations is approximately constant and the maxi-

y(t)

%
t

20

FIG. 12. (a) Plot of x(t) versust and(b) y(t) versust for k=1,
a=0,d=1.9, andc=0.8.(c) Plot of x(t) versust and(d) y(t) versus
t for k=1,a=0.0015,d=1.9, andc=0.8.

We can understand some of the behavior in Fig. 12 using
the theory of the adiabatic invariani®0]. Let us writey(t)
=y(t)+Ay(t), whereAy(t) is assumed smalf(t) is defined

1 (™
YO=14 fo y(t) dt, (12)

andT,(t) is the period of thex oscillator at time.. We assume
that T,(t) is a very slowly varying function of time and does
not change significantly during one period of thescilla-
tion. Let us also writex(t) =x(t) + Ax(t), where Ax(t) is as-
sumed small and

t
X(t) = X(t)sin{ f Q. (tdt+ 4, (13

with X(t) a slowly varying function ot. If we substitute Eq.
(13) into Eq.(6) for x(t) and average over one perioft),
we obtain

— QAHX(H) + KX(t) + gx3(t) +ERMHX(H)=0.  (14)

Thus the frequency of the oscillator can be written as
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x-oscillator amplitude depends on the maximum amplitude
of they oscillator. This variation oK, with A can be seen
in Fig. 12¢).

After each interval of adiabatic motion, the system under-
goes a relatively short interval of nonadiabatic motion where
y(t) approaches and crosses zero. During ritie nonadia-

batic interval, the adiabatic approximati¢fl| <Q? is vio-
lated, and thec oscillator acquires an additional phase shift
A¢, so that its phasep at the next,(n+1)th interval of
adiabatic motion becomeg, ;1= ¢,+A¢,. The amplitude of
they oscillator is also changed fromy, to a different value
A,.+1 that, for large enougl, results in a very large change
4 ) of the integral adiabatic phase shjff),(t)dt> 7 at the (n
+1)th interval of adiabatic motion compared to thi inter-
i val. Since the result of the nonadiabatic transforma#gn
7% 225 25 5 24 245 2 B5 2 25 — Ans1, Pn— bneq Strongly depends on the phase with which
t the x oscillator enters the nonadiabatic region of motion, the
system turns out to be very sensitive to any small perturba-

x(t)y(®

FIG. 13. Plot ofx(t) andy(t) versust for an oscillation interval

in Figs. 12a) and 12b) (for k=1, a=0, d=1.9, andc=0.8). tions in the phase space. The latter may explain qualitatively
one of the possible mechanisms of the dynamical chaos in
a the system.
O5(0) = k+ 2XE(1) + (D), (15)

VI. COSMOLOGICAL EVOLUTION IN TERMS OF THE

which is a slowly varying function of. In Fig. 13, we plot OBSERVABLE TIME AND GENERAL OVERVIEW

X(t) versust andy(t) versust for an interval of oscillations in

Fig. 12a). In the region wherg(t) is large enough to ensure  The pyrpose of this section is to sketch how the dynamics
the condition of the adiabatic approximati4ﬂX|<Q)2(, the  of the models in Eq¢l) or (2) can be translated into cosmol-

agreement is excellent. ogy. Analysis of the regimes describing an observable cos-
Because botX(t) and(),(t) are slowly varying functions mological evolution will be given elsewhere.
of time, the adiabatic invariarfd,(t)X?(t) of the x oscillator The model described in previous sections gives a classical

is approximately conserved during the time interval overpicture of a cosmological evolution of our Universe as a
which this adiabatic approximation applies. bgt,.=A de-  self-consistent process of mutual creation of the interacting
note the maximum value of thg-oscillator amplitude, and gravity and matter fields from originally small quantum fluc-
let X, denote the minimum value of theoscillator ampli-  tuations. The model only describes a classical stage of the
tude. Then the approximate conservation of the adiabatic inevolution when both fields have reached the macroscopic

variant gives coherent values. Justification of the classical model and de-
scription of the preceding spontaneous fluctuations can be
a _ a de on the basis of the full quantum equations of the quan-
th\/k+—Xt2+c t) = X2,/ K+ =X3;, + CAZ. made orthe 1t g qt q
® 2 0%+ V(0 =X 2°mn tum field model(1) in a direct analogy with a well known

(16) theory (Qquantum electrodynamics in a cavitgf the laser
radiation that starts from spontaneous quantum fluctuations

For k=1 and smalla and X(t), this becomes and, due to stimulated amplification, very soon reaches the
classical(often called as semiclassigakgime with a mac-
X(1) = Xipin | A (17) roscopically largegcoherent field amplitude[21]. Moreover,
y(t) the model(4)—(6) assumes that both fields are spatially ho-

— : . mogeneous. Subsequent or simultaneous creation of all other
Thus, asy(t) decreases away from its maximum value, the . ,

mplitude of thex illations incr n b N ir]spatlal modes of the scalar and other matter fields, for ex-
lazligplg € of thex osciflations Increases as can be see ample incoherent components of matter and radiation, could

i ful t bstitute th . into the H .Ialter cosmological evolution, especially near singularities
L 1S usetul to substitute these expressions Into the Hami [13]. In particular, the process of reheating of the Universe
tonian in Eq.(4) for y(t) at its maximum amplitude where

=0 and iod of i t i due to decay and dissipation of the coherent inflation scalar
y()=0 and average over one period of oscillation of #1€ fje|q jnto incoherent matter and radiation as well as the pro-
oscillator. We then find

cesses of spontaneous quantum creation of particles from a
1 a vacuum due to various nonadiabatic mechanisms in a non-
in:E[k"'_AZ]- (18)  stationary curved spacetime.g., like Hawking radiation
near black holes[2] could become important at some stage
Thus fora=0 the minimum amplitude of the oscillator is  [3]. Obviously, all such effects should be treated on the basis
always the same, but foa#0 the minimum value of of a full quantum field theory of the modél) or of the more

X2

m
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o Q(7) = Qeexphn), - Qo= (ht) ™, (21)
s00b over an infinite interval of the observable time with a con-
g stant Hubble parameter
0
1dQ 1dQ
h=——=—5—. (22
. . . : . . : . Qdr 07 dt
—50\,0 1000 2000 3000 4000 5000 6000 7000 8000 . . i .
T Therefore, if the model has solutions which are not stabilized
x 10° . ; . . . dynamically at some finite level but appear to end in the
"f [(b) singularities, these singular solutions can have a well-defined
osh physical meaning in the Friedmann-Robertson-Walker repre-
= % : : sentation and, in fact, are of great importance for they de-
= -osp scribe the observable cosmological inflation. The end of the
_1‘_;: o ] conformal time at=t.., e.g., in the de Sitter regime when
-2fp~2000, 500 1000 1500 T
0 To00 2000 3000 7000 5000 t= dr = i(l _e—hT) St.=z— atr— +o
N 0 |Q(T)| hQ, - hQ, ,
FIG. 14. () Plot of y(7) versusr for k=1, a=0, d=1.9, andc (23

=0.8. (b) Plot of y(7) versusr for k=1, a=0.0015,d=1.9, andc ) ) .
=0.8. The inset shows more details of the early time behavior.  implies a well-known fact that an event horizon

general models and are beyond the scope of the present Re(t):|Q(r)|f d7/|Q(7)| = [Q0)|(t. -1), (24
minisuperspace modéd)—(6). T

The behavior of the modéh)—6), so far, has only been
studied in terms of the conformal time, In order to relate
the predictions of the model with the observational cosmol
ogy, one has to use the well-known relatig@%

i.e., the distance in the Universe from which the light could
bring to us an information about the events taking place at
‘the momentr, can be finite, e.g., of the order of 1,/that
imposes a finite upper bound on the size of the observable
part of the Universe. At the same time, a particle horizon

t 471G (¢
o= [ o= 22 o a9 :
0 0 Rp(t):Q(T)|f dT’/|Q(T')|=|Q(t)|t, (25)
0

between the conformal time and the observable time. i.e., an actual distance travelled by light from the initial mo-
They stem from the Friedmann-Robertson-Walker represen-"" y 19

tation for a line element(d9?=02(t)(dt2=(dn>, in the ment of big bang until the present moment of tir{® or, in

homogeneous fields that we consider here. P ’ y

For the cas@# 0, it is of interest to plot the gravity field t_’St“ phroport;on_ally to Itht(_a scale of the L_Jnlveris:é(t)llafo. "
(the “radius” of the Universey(7) versusr rather thany(t) res:(r:]t me(;(é) Ozs'vl?.ssgbu .'gn: s§§g<%r:§ d:igr:'n)::elnn €
versust, as was done in Fig. 12. In Fig. (& we ploty(7) P q2). It Vious w ! :

. this case the gravity oscillator is unstable by itself. How-
versusr for k=1,a=0,=0.8d=1.9 [the same case as Fig. . .
12b)]. In Fig. 14b) we plot y(r) versus 7 for k=1a ever, wherb> 0 the explosive solutions take place due to the

B _ B ; nonlinear interaction of thg oscillator (gravity) with the x
_0‘0015.C_.0‘8d_1'9 [the same case as Fig. (7. We see oscillator (mattep, even if they oscillator is partially stable,
tha_lt, whll_e in they(t) ve_rsust plot in Fig. 14d) _they_oscn— b>0, ie., the cosmological constant is negativa,
lations with larger amplitude have shorter periods, inytfw =-3\,/(16mG) <0. A comparison with the reference explo-
versusr plot in Fig. 14b), these samg oscillations have  gjye jaw of Eq.(20), that corresponds to the de Sitter infla-
approximately constant period. tion, demonstrates that the model in Et) has a potential to

The conformal field Q(t), i.e., the y oscillator y  gynain naturally cosmological inflation and simultaneously
=(3/47G)Y2Q), plays the part of an overall scale factor in the solve the problem of the cosmological constant.

Universe that stretches the observable timeith respect to The discussion above indicates that the unstable and ex-
the conformal time. As a reference regime, let us consider ap|osjve solutions are more interesting and closely related to
regime of the explosive evolution of the conformal factor  the ohservational cosmology than the stable solutions. At the
same time, the stable solutions which demonstrate chaotic
Q) =[(t.-th]™* (200 bounded behavior are also interesting for they shed a light on
how a newly borning Universe is “hesitating” and searching
that ends in a singularity at a finite moment of the conformalfor a way out of a small scale phase-space region around the
time t,, [y(t) — ast—t,] and corresponds to a standard detrivial zero fixed point to an inflationary large scale phase-
Sitter inflation space region.
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It would be interesting to check whether an original quan-the original modek1), which were not included in the par-
tum field model(1), that is much more involved than the ticular dynamical mode({4)—<6), as well as a realistic cos-
classical minisuperspace modé)}—6), could explain a tran- mology based on the modgl) with the unbounded Hamil-
sition from a decelerating regime to an accelerating regimeonian will be discussed elsewhere.
of the Universe expansion that, according to recent astro- The present simplified modé)—(6) clearly demonstrates
nomical observationf22], occurs at a redshit~0.5. This  that the actual dynamics of the cosmological expansion is
transition means that the observable acceleratf®|/d7*  nagyrally more intriguing and rich than was assumed in most

after being positive at the de Sitter-like inflation stage,uf the models used until recently for the interpretation of the
should become negative for a finite interval of time and thenysiyonomical observations in cosmology.

should change its sign to a positive value again at the latest

times.
A simple illustrative example shown in Fig. 14 is not of Vil. CONCLUSIONS
that complicated type since the second derivat|€)|/d7* The system we consider here has very different structure

has the same sign on each interval of adiabatic motion thgtom the coupled nonlinear oscillator systems that one finds
corresponds to the expansion of the Universe from zero sizg nonrelativistic classical mechanics, even though the
to some maximal radiu§/=A) with a deceleration and then Hamiltonian at first sight has many similarities. A possible
contraction of the Universe again to the zero sibdy  analogy is that of an anharmonic oscillator coupled to an
crunch with an acceleration. external field whose strength is nonlinearly affected by the
Other regimes which are more relevant to the observadegree of excitation of the oscillator. The system has very
tions are possible in this system as well. Of course, for theinusual stability and dynamical properties. There are vast
actual explanation and prediction of the cosmological evoluregions of parameter space where the system is only stable
tion, along with the basic classical dynami@g—6) of two  for very small values of the matter and gravity fields and
oscillators the other essential properties of the original quandemonstrates fast growth of fields to infinity in an explosive
tum field theory(1) have to be included in the analysis. Let fashion. In other regions of parameter space, the system ap-
us mention some of them. First, according to thepears to be stablgbounded regardless of the amplitude of
renormalization-group analysig], the nonlinear coupling the fields although it can undergo huge variations in the val-
parameters., \,, and\,, thatisc, b, anda, are in fact the  ues of these fields. The main conclusion from the numerical
running constants which are the functions of the energy scalgnalysis presented above is that the systems with the un-
of the procesgin particular, of the relative momentugly).  bounded Hamiltonians constitute very interesting class of
This feature effectively modifies the nonlinearities of thenonlinear systems with very unusual and rich dynamics.
coupled anharmonic oscillato(d)—(6). It is especially im-
portant in the regions where the self-coupling paramgger
=-16mGA/3 changes its sign around zero value, i.e., for
relatively small cosmological constant and in the infrared Authors G.B.A. and L.E.R. thank the Robert A. Welch
and ultra-violet asymptotically free regions where all nonlin- Foundation(Grant No. F-1051 and the Engineering Re-
ear coupling parameters vanigtee details irf1]). Second, search Program of the Office of Basic Energy Sciences at the
the explicitly quantum effects in the chaotic dynamics andU.S. Department of Energy(Grant No. DE-FGO03-
averaging of the observable quantities, e(€?), could be =~ 94ER1446% for support of this work. Author L.E.R. thanks
important. Third, the effects of the spatially inhomogeneoughe U.S. Office of Naval Resear¢@rant No. N0O0014-03-1-
modes of the gravity and matter fields on the global nonlin-0639 for partial support of this work. Author E.V.D. ac-
ear dynamics and instability could be also important. Soménowledges the support from the Russian Science Support
effects originated from an inclusion of one more spatialFoundation. Authors E.V.D., VL.V.K., and V.V.K. acknowl-
mode of the matter field in a similar model wit=0,b <0, edge the grant 1744.2003.2 of the Council for Support of the
¢>0k>0 was discussed ifiL3]. These and other effects in Leading Scientific Schools of the Russian Federation.

ACKNOWLEDGMENTS

[1] V. V. Kocharovsky and VI. V. Kocharovsky, Found. Phy&6, [7]1 E. Gunzig, J. Geheniau, and I|. Prigogine, Natgrendon)
243(1996. 330, 621(1987).

[2] N. D. Birell and P. C. W. DaviesQuantum Fields in Curved  [8] E. Gunzig and P. Nardone, Fundam. Cosmic Phik. 835
Space (Cambridge University Press, Cambridge, London, (1989.

1982. [9] E. Calzetta and C. El Hasi, Class. Quantum Gra0, 1825

[3] E. Kolb and M. TurnerThe Early UniverséAddison-Wesley, (1993.
New York, 1988. [10] E. Calzetta, inDeterministic Chaos in General Relativjitgd-

[4] E. P. Tryon, NaturéLondon) 246, 396(1973. ited by A. Burd, A. Coley, and D. HobillPlenum, New York,

[5] P. I. Fomin, Dokl. Akad. Nauk SSSRR9, 831 (1975. 1994.

[6] R. Broutet al, Ann. Phys(Parig 115 78(1978; Gen. Rela- [11] S. Blanco, G. Domenech, C. El Hasi, and O. A. Rosso, Gen.
tiv. Gravit. 10, 1 (1979; Nucl. Phys. B170, 228(1980. Relativ. Gravit. 26, 1131(1994.

066210-10



NONLINEAR DYNAMICS OF GRAVITY AND MATTER ... PHYSICAL REVIEW E 70, 066210(2004)

[12] S. Blanco, A. Costa, and O. A. Rosso, Gen. Relativ. Gravit.[18] G. M. Zaslavsky, M. Edelman, and B. A. Niyazov, Chads
27, 1295(1995. _ 159 (1997).
[13] E. Calzetta and C. El Hasi, Phys. Rev.31, 2713(1995. [19] G. H. Walker and J. Ford, Phys. Rel88 416 (1969.

[14] A. Helmi and H. Vucetich, Phys. Lett. 230, 153(1997. [20] L. D. Landau and E. M. LifshitzMechanics Course of The-
[15] Linda E. Reichl,The Transition to Chaos: Conservative Clas- oretical Physics Vol. 1(Butterworth-Heinemann, Oxford

sical Systems and Quantum Manifestatid?rsd ed.(Springer-

2000.
Verlag, New York, 200
[16] M. Lgkshmanan and T‘? Sahadevan, Phys. Re\ah 861 [21] M. Sargent Ill, M. O. Scully, and W. E. Lamb, Jtaser Phys-
(1985 ’ ics (Addison-Wesley, Reading, MA, 1974

[17] M. Lakshmanan and R. Sahadevan, Phys. R, 1(1993. 221 A. G. Riesset al, Astrophys. J.607, 665(2004).

066210-11



